New Models and Algorithms for Solutions of Single-signed Fully Fuzzy Lr Linear Systems
نویسندگان
چکیده
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System (FFLS) of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an FFLS with a nonnegative coefficient matrix, we consider an equivalent FFLS by using an appropriate permutation to simplify fuzzy multiplications. To solve the m × n permutated system, we convert it to three m × n real linear systems, one being concerned with the cores and the other two being related to the left and right spreads. To decide whether the core system is consistent or not, we use the modified Huang algorithm of the class of ABS methods. If the core system is inconsistent, an appropriate unconstrained least squares problem is solved for an approximate solution. The sign of each component of the solution is decided by the sign of its core. Also, to know whether the left and right spread systems are consistent or not, we apply the modified Huang algorithm again. Appropriate constrained least squares problems are solved, when the spread systems are inconsistent or do not satisfy fuzziness conditions. Then, we consider the FFLS with a mixed single-signed coefficient matrix, in which each component of the coefficient matrix is either nonnegative or nonpositive. In this case, we break the m× n coefficient matrix up to two m×n matrices, one having only nonnegative and the other having only nonpositive components, such that their sum yields the original coefficient matrix. Using the distributive law, we convert each m× n FFLS into two real linear systems where the first one is related to the cores with size m× n and the other is 2m× 2n and is related to the spreads. Here, we also use the modified Huang algorithm to decide whether these systems are consistent or not. If the first system is inconsistent or the second system does not satisfy the fuzziness conditions, we find an approximate solution by solving a respective least squares problem. We summarize the proposed approach by presenting two computational algorithms. Finally, the algorithms are implemented and effectively tested by solving various randomly generated consistent as well as inconsistent numerical test problems.
منابع مشابه
NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملSolutions of Fuzzy Linear Systems using Ranking function
In this work, we propose an approach for computing the compromised solution of an LR fuzzy linear system by using of a ranking function when the coefficient matrix is a crisp mn matrix. To do this, we use expected interval to find an LR fuzzy vector, X , such that the vector (AX ) has the least distance from (b) in 1 norm and the 1 cut of X satisfies the crisp linear system AX = b ...
متن کاملSolving LR fuzzy linear matrix equation†
In this paper, the fuzzy matrix equation $Awidetilde{X}B=widetilde{C}$ in which $A,B$ are $n times n$crisp matrices respectively and $widetilde{C}$ is an $n times n$ arbitrary LR fuzzy numbers matrix, is investigated. A new numerical procedure for calculating the fuzzy solution is designed and a sufficient condition for the existence of strong fuzzy solution is derived. Some examples are ...
متن کاملFully Fuzzy Linear Systems
As can be seen from the definition of extended operations on fuzzy numbers, subtraction and division of fuzzy numbers are not the inverse operations to addition and multiplication . Hence, to solve the fuzzy equations or a fuzzy system of linear equations analytically, we must use methods without using inverse operators. In this paper, a novel method to find the solutions in which 0 is not ...
متن کامل